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Persistent Currents in Mesoscopic Rings: 
A Stochastic Model 

F. M a r c h e s o n i  I 

A stochastic model, proposed first by Landauer and Biittiker to explain the 
phenomenon of persistent currents in submicrometer normal metal rings, is 
developed quantitatively by determining the relevant relaxation time scales. The 
current excited by a periodically modulated magnetic field threading the ring is 
computed as the sum of two clear-cut components: a persistent current and a 
driven current. The latter component provides a notable example of a stochastic 
resonance mechanism in solid-state physics. 
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1. I N T R O D U C T I O N  

In the presence of a static magnetic field, an isolated normal  metal ring 
with linear dimensions smaller than the electron-phase coherence length 
was predicted (1'2~ to bear an equilibrium persis tent  current which is 
periodic in the magnetic flux threading the loop. At zero temperature the 
characteristic length scales are the ring circumference L - 2 z r R  and the 
cross-sectional area A - row 2 (the average width w is assumed to be much 
smaller than the loop radius R, w ~ R), the electron mean free path I, the 
localization length L~, and the electron phase-coherence length L~. A con- 
ducting ring is termed mesoscopic when L ~< L~. The order of magni tude of 
the characteristic length scales may  vary depending on the material and the 
temperature. (4'5~ Typically, for a pure Au ring (5~ L ,-~ 2/~m, w ~ l ~  0.07 ~, 
and both  L~ and L~ are in excess of 10 #m at 40 inK. 

The phenomenon  of persistent currents, though confirmed experimen- 
tally, (4'5) has been puzzling to theorists. (6 11) One reason for controversy 
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involves the very meaning of averaging over disorder (i.e., the impurity con- 
figurations) ( - ' ' ) D :  in fact, such an average can be carried out either for 
a constant number of electrons N (canonical average) or at constant 
chemical potential # (grand-canonical average). The experimental observa- 
tions were taken under diverse conditions: first, ~4~ on an ensemble of 10 7 

disconnected rings with the same geometry but different number of 
electrons and impurity configuration; later, (5) on single isolated rings. The 
magnitude and the flux periodicity of the observed persistent currents 
depend crucially on the kind of averaging involved (e.g., on both N and 
disorder in the experiment ref. 4, none in the experiment of ref. 5). 

Although the quantitative agreement between experimental observa- 
tions and theoretical predictions is still far from satisfactory, a few 
facts are now well established. The disorder-averaged persistent current 
Ie(q~) =- (I(q~))D is a periodic function of the constant magnetic flux q~ 
threading the ring, 

m 

where 4o = h/e denotes the magnetic-flux quantum in units with c = 1. 

(i) Calculations for the one-channel loop and numerical simulations 
for the multichannel rings (6) indicated that averaging over disorder at 
constant N is different from averaging at constant /~, i.e., (I(~b, N ) ) D r  
(I(~b,#))D.  Moreover, averaging over N makes further averaging over 
disorder ineffective, ( I ) N =  (I)N,D, and accounts for the period halving (4) 
of the function Ip(q~) in Eq. (1), i.e., ( I m ) N = 0  for m odd and ( Im)u>O 
for m even. In view of these results, (Ip(C]))) N is a paramagnetic current, 
whereas the sign of I prior to disorder averaging is not defined. The 
difference between canonical and grand-canonical averages in mesoscopic 
ensembles recently has been given a solid theoretical ground. (9) 

(ii) In the ballistic regime, L ~ l, (I2m)U = 21o/~m is independent of 
the number of transverse channels M =  Ak2F/4~. Here Io is the natural unit 
for the current in a single-channel loop, Io = err/L, where ve is the electron 
velocity at the Fermi level, ee=hZk2F/2m. In the diffusive regime, l ~ L ,  
instead, ( I 2 m ) U  scales with 1/M. (7-9) 

(iii) The single-electron description of the phenomenon under- 
estimates the magnitude of the persistent currents in both experiments (4,s~ 
by one order of magnitude or more. (6'9) This fact leads to the conclusion 
that the electron-electron interactions would account for the dominant 
contribution to the measured currents. (~~ 

In this paper we discuss quantitatively most of the results outlined 
above by means of a simple stochastic model originally proposed by 
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Landauer and Biittiker (2~ to justify the persistency of nonvanishing equi- 
librium currents in isolated normal metal rings threaded by a constant 
magnetic field. Such a model proves, indeed, a useful tool to investigate the 
phenomenon of persistent currents in the single-electron approximation. 

2. T H E  S T O C H A S T I C  M O D E L  

The single-electron states of an isolated mesoscopic ring are described 
by the level structure of the periodic potential Up(x). For a single-channel 
loop, M = 1, Up(x) = UD(x + L) denotes the effective potential experienced 
by a single electron revolving around the loop circumference with a static 
configuration of elastic impurities with l ~  L ~< L~. The vector potential 
associated with the magnetic field can be eliminated from the relevant 
Schr6dinger-Bloch equation by modifying the natural periodicity of the 
nth eigenfunction ~,kn(x), 

~,~(x + L)=exp (2rci ~-~o) tp,,(x ) (2) 

The corresponding energy level en(cb) is a periodic band in the flux cb with 
period q5 o. For a time-independent flux we obtain the zero-temperature 
current 

0en I= Z in= -- Z Oq5 (3) 
n n 

The summation in Eq. (3) is meant to include all the occupied states of 
Up(x) up to the Fermi energy (for the time being we ignore the spin 
degeneracy s = 2). Although the actual band structure en(~) is unknown, it 
can be proved (12) that the M transverse channels are degenerate in the 
ballistic regime, while a band splitting mechanism becomes effective in the 
diffusive regime. However, for weak disorder l~L,  the resulting non- 
degenerate bands retain memory of their geometric degeneracy in the form 
of a strong statistical ~/, correlation among a fraction Mefr of them. 
Successive higher-lying bands contribute with alternating signs to the 
current (3). Moreover, the current in increases with the energy, i.e., with n, 
so that at zero temperature and for M =  1 the overall sign of I shall be 
determined by the highest-lying occupied band.(l'2) Its average with respect 
to disorder yields immediately Ie(~).  In the multichannel case, instead, a 
summation over the Mo~ topmost bands is required. (12~ 

As a further ingredient, we assume that inelastic scattering, no matter 
what the source, is weak enough to be treated as a random perturbation. 
If kT is smaller than the spacing of two bands adjacent to the Fermi level, 
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electronic transitions between this pair of bands (i.e., between an occupied 
and an empty band) may occur as an effect of the inelastic (or electron- 
phase-breaking) processes. 

Let us specialize the approach outlined above to the diffusive regime. 
To be more quantitative, we introduce a stochastic variable E(t) for each 
of the Merf contributing channels. The energy E(t) is free to fluctuate 
between two metastable states e_+ symmetrically located with respect to the 
Fermi level, e+ =~v+_A(q~)/2 (after disorder averaging). The two bands 
are separated by a large activation barrier, which can be overcome only in 
the presence of inelastic scattering. For  simplicity, we assume that the 
energy fluctuations representing the inelastic effects are well described by a 
delta-correlated Gaussian noise, ~e(t). Such an assumption follows the 
picture of electron phase breaking as the result of very many independent 
inelastic collisions. The bistable process E(t) is now statistically determined 
if we can evaluate the intensity of ~e(t), DE, and the average switch time 
~,~ between 5_+. 

The parameters DE and zR are a function of the energy (length) scales 
of the problem. Let us consider an isolated gas of electrons in a impurity 
potential Ug(x) and neglect the electron-electron interactions. The 
statistics of the energy spectrum en(q~) is characterized by(12): 

(i) The mean spacing of the electron energy bands adjacent to the 
Fermi level with respect to disorder and magnetic flux, A o = (A(tb))~,. The 
spacing Ao is related to the electron density of states v by the zeroth-order 
equality (3) 

1 
v - LdAo (4) 

where d = 1 is the effective dimensionality of the ring. The spacing A0 is 
insensitive by definition to the actual disorder configuration and therefore 
cannot fully reproduce the transport properties of the conducting sample. 

(ii) The Thouless energy (3'12) Ec, which quantifies the sensitivity of 
en(q~) to a change in the boundary conditions (2), i.e., Ec ~ ~?%n/~?~b 2. In the 
diffusive regime, E~ is the reciprocal of the time needed by a single electron 
to diffuse through the ring circumference L, i.e., 

hD 
E ~ -  L2 (5) 

where D = l v  F is the spatial diffusion coefficient for a one-dimensional elec- 
tron system. It is well known ~3) that D is sensitive to quantum interference, 
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while A 0 is not. As a consequence, in the limit of interest, l ~ L ,  weak 
localization corrections affect the conductivity of the sample 

a = e2vD (6) 

but not the density of states v. 

A useful relationship between Ec and A0 can be established for the 
electron energy spectrum in a normal metal ring. For a one-dimensional 
loop the mean spacing of the electronic bands at the Fermi level is hvF/L. 
In the presence of M transverse channels, instead, A o = hvv/LM, whence, 
by substituting D with Iv v in Eq. (5), 

M l  
Ec = ~o - ~  = AoMeff (7) 

As anticipated, disorder removes the geometric degeneracy due to the M 
transverse channels, a fraction M e f f = M l / L  of which retains a strong 
statistical correlation. In the presence of strong disorder, we have Anderson 
localization and Mefr~ 1, i.e., 

Lr = Ml  (8) 

We recall that in the case under study, l ~ L ~ Lr and M is typically of the 
order of 10 2 or larger. (4'5) 

We are ready now to calculate D E and rR. In the presence of inelastic 
processes the periodicity of the system, Eq. (2), is broken. We can imagine 
the motion of a single electron as if it were free to scatter elastically over 
a distance of the order of L~, which it diffuses in a time interval r e given 
by L~ = (Ml) 2 = Dry, that is, 

h 
~ = ~00 Mefr (9) 

Such a mechanism allows Mefr electrons at the Fermi level to jump inde- 
pendently between adjacent energy bands within an energy range Ec, 
which, in fact, represents the maximum sensitivity of en(~) to the breach of 
the periodic boundary conditions caused by inelastic scattering. This 
implies that each level en(~) within the sensitivity energy range fluctuates 
with a diffusion coefficient DE given by Ec 2 = OE'C4, whence 

A~Ec 
DE= h (10) 

D~ is by definition the intensity of the random noise ~E(t) driving the 
stochastic observable E(t). 
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In order to estimate zR, we remark that the dephasing A~b in the elec- 
tron wave function caused by a jump between two adjacent bands increases 
with time according to the law A(J(t) = Aot/h. On the other hand, we know 
that the dephasing due to inelastic scattering is characterized by the length 
scale L~>>L. Therefore, the electron phase breaking through the loop 
circumference in the presence of the inelastic effect is of the order of L/L~. 
The average switch time z R is determined by the identity A~(zR)--L/L~, 
i.e., 

( ~  1/2 h Lq~ 
z " :  Z \ E j  = So T 

(11) 

where we made use of the definition Eo - hD/L2~. 
Let us summarize our stochastic model for the persistent currents in 

disordered normal metal rings. The disorder average of the current (3) is 
determined by the additive contributions of the Merf topmost occupied 
bands. The conducting electrons are characterized each by a fluctuating 
energy E(t) which switches with rate 1/zR between the energy values of two 
bands, one occupied and one empty, adjacent to the Fermi level. Energy 
fluctuations are the effect of independent inelastic collisions, represented 
here by a white Gaussian noise acting upon E(t), with intensity DE. 

3. C U R R E N T S  I N D U C E D  IN A M E S O S C O P I C  RING BY A 
T H R E A D I N G  M A G N E T I C  FLUX 

We apply the model outlined in the previous section to the problem 
of the stationary currents induced in a weakly disordered normal metal 
ring by a periodically modulated magnetic flux threading the loop, e.g., 

~b(t) = q~DC + ~AC cos (2t (12) 

The static case, ~AC = 0, has received a lot more attention by theorists (7-9) 
puzzled by the very nature of the phenomenon under investigation. The 
oscillating case (m is of practical interest, too, since the experimental 
observations make use of a sinusoidal flux (12) with ~ a c ' ~  ~Dc in order 
to single out the �9 dependence of the monitored currents relative to strong 
noise backgrounds, (4,s) according to the expansion 

31p ~Ar COS f2t + ... (13) le(cI)) = le(q~~ + ~ ~DC 
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Of course, a periodic magnetic field has the further effect of stimulating a 
periodic current consistent with the requirements of the linear response 
theory, 

I~ = O(C/)DC ) N(t) (14) 

where N denotes the induced electromotive force (l/L)d(b/dt. 

a. Persistent currents in the static case. As anticipated in Section 2, 
the electron energy bands are strongly correlated in pairs. To make that 
argument more quantitative, let us consider a pair (n, n +  1) of bands 
adjacent to the Fermi level for a given impurity configuration. On applying 
the Brillouin-Wigner expansion of ref. 6, one finds 

e.(~Dc) = L 2(. p) c~ 2~p So ] (15) 
p = O  

where the coefficients 2(f ) obey the following approximate equalities: 

Z(1) (17 
n +  1 ~ - - / ~ n  

~(2) (2) l~ (1)';2/I-o(0) ~(0) 
n + l  ~ --'~n = --tZ~n ! / L ~ n + l - - ~ n  ] 

and e}o) are the unperturbed electron energy levels. When averaging over 
the number of electrons N, the current contributions i ,(~) tend to cancel 
out pairwise. The sign of the first harmonic in Eq. (15) depends on n, while 
the second harmonic is always nonnegative for the lower energy level. 
Correspondingly, the first harmonic of the averaged current ( I p ( ~ ) ) N  
vanishes, while the second harmonic is positive definite. This argument can 
be extended to affirm that all the odd harmonics of (I~(qs))N are 
vanishingly small, whence the period halving observed in the experiment of 
ref. 4. 

Most notably, in the diffusive regime, 2(, p) is proportional to WPMeff, 
where W is the probability for the electron to diffuse in a one-dimensional 
sample through a distance equal to the loop circumference L, the number 
of transverse channels Meff plays the role of path degeneracy, and p is the 
winding number, telling us how many times the magnetic flux ~ has been 
encircled by the diffusing electron. As a further complication, we have 
introduced explicitly the inelastic effects, which determine a finite lifetime 
rR of the electronic states with periodic boundary conditions (2). This 
implies that the probability W decays exponentially over one revolution 
time LZ/lvv, i.e., W ~  Wexp(-LZ/lvv~R). In conclusion, we obtain 
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with Cm=(4rcm/~o)(2~2~)>lv. The explicit calculation of (2~2m)>N lies 
beyond the reach of our simple model. However, the coefficients c,, can be 
determined by making contact with Eq.(33) of ref. 12: on posing 
(e~+l(q~)--e~(~b)>N= A(~b) and inserting Eq. (6), one concludes that 

2A0 
C m = (17)  

rCq5 o 

The summation (16) can be performed explicitly to yield 

2A 0 p sin q 
= (18) 

< I P ( d D D C ) > N  7zqD 0 1 -  2pcosq+p  2 

with p = e x p [ - 2 ( E r  1/2] and q=4rcq~oc/q~ o. Including the spin 
degeneracy s =  2 amounts to multiplying the rhs of Eqs. (16) and (17) by 
a factor s 2. Alternatively, for a generic static flux ~b, (Ie(q~)>N can be 
written as 

~(~) 
<Ie(4~) >N = (19) 

04~ 

with A(q~) = - A~~ ln(1 - 2p cos q +p2) (20) 
t47"C~ 

The results (16) and (17) were obtained first in ref. 9. 

b. Currents driven by an oscillating magnetic flux. The current I~(t) 
driven by the oscillating component of q~(t), Eq. (12), can be easily 
computed within the framework of the stochastic model of Section 2. 
The time-dependent magnetic flux induces an electromotive force 
R = -(O/L)~bac sin Ot. The fluctuating energy E(t) is then driven by an 
effective forcing term of the order of the dissipated power 

eD s --<eR'u T AC sin Ot (21) 

In Eq. (21) the angular average brings in a factor l/L due to the assumed 
dissipative regime for the electronic motion. The variable E(t) denotes, 
then, a bistable stochastic process driven by a periodic force (21). Such a 
process will exhibit stochastic resonance. ~ In particular, the stochastic 
average (E(t)> for a single-channel loop can be obtained from Eqs. (7) of 
ref. 15 with the following substitutions: x ~ E ,  xm ~A(q~oc)/2, D-~De,  
2--, 1/ZR, and a~eDf2qSoc/L 2. If, for simplicity, we agree to take the 
further average of (E(t)> over q~oc, we obtain 

(E(t)>~ = Eo sin(f2t + e) (22) 
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with 

tg ~ = - f2 r  R (23) 

and 

eD hs ~AC 
E~ L 2 E c [1 + (~c~"CR)2"]1/2 (24) 

In the presence of M transverse channels, Eo has to be multiplied by Merf, 
the number of statistically correlated channels. The driven current 
associated with (E(t))r follows immediately, 

eD hr ~AC 1 
( I~( t ) )~-L2 Ec q~o [l+(f2rR)2] I/2sin(Ot+~) (25) 

Note that in view of Eqs. (6) and (21) with (A(qSDC))e=Ao, the 
amplitude of I~(t) reads 

(7 

[1 + (f2zR)2] 1/2 jRI (26) 

as expected from the linear response theory. 
The amplitude of (E(t))e might exhibit a typical stochastic resonance 

behavior due to the fact that 1/z R tends to vanish at zero temperature, i.e., 
in the absence of inelastic processes. However, in the experimental condi- 
tions of refs. 4 and 5, r -~ 102 Hz and r ~ 1 for r ~ 108 Hz. This means 
that in the analysis of the relevant measurements, the driven current l~(t) 
may be safely neglected compared to Ie(~Dc), contrary to the conclusions 
of ref. 11. 

4. C O N C L U S I O N S  

The stochastic model we developed for investigating the phenomenon 
of persistent currents in mesoscopic rings confirms the predictions of both 
the Green-function diagrammatic technique and the linear response theory. 
The advantage offered by such a model is the simple intuitive picture of the 
phenomenon presented in Section 3. 

Any sensible approach to this puzzling problem should be improved to 
go beyond the single-electron approximation. At the present time, it sounds 
reasonable to conclude that in a quasi-one-dimensional ring threaded by an 
external magnetic flux the measured persistent currents are mostly due to 
the electron-electron interactions. 
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